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Problem Set 8

What lies beyond what can be solved by a computer?  What intuitions can we build about those 
sorts of problems?  In this problem set, you will learn how to reason about the unsolvable.

Start this problem set early.  It contains five problems (plus one survey question and one extra 
credit  problems),  some of  which require  a  fair  amount  of  thought.   I  would suggest  reading 
through this problem set at least once as soon as you get it to get a sense of what it covers.

As much as you possibly can, please try to work on this problem set individually.  That said, if 
you do work with others, please be sure to cite who you are working with and on what problems. 
For more details, see the section on the honor code in the course information handout.

In any question that asks for a proof, you  must provide a rigorous mathematical proof.  You 
cannot draw a picture or argue by intuition.  You should, at the very least, state what type of proof 
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 7% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so be aware that the difficulty increases over  
the course of this problem set.

Good luck, and have fun!

Due Friday, June 1st at 2:15 PM



Problem One: Understanding Mapping Reductions (25 Points)

We often use mapping reductions to determine how hard one problem is by relating it to some other 
problem we already know about.  However, we have to be careful when doing so.

i. Below is an incorrect proof that REGULARTM (the language of TMs whose language is regular) 
is  RE, even though in lecture we proved that it  was neither  RE or co-RE. Identify what is 
wrong with this proof.  You should be sure that you are 100% positive what is wrong with this  
proof before you attempt any other problems on this problem set, because the mistake made 
here is extremely common!

Theorem: REGULARTM  ∈ RE.

Proof: We exhibit a mapping reduction from ATM to REGULARTM; since ATM is RE, this proves that 
REGULARTM is RE as well.  Given a TM/string pair ⟨M, w , let the function ⟩ f(⟨M, w ) = ⟩ ⟨M' ,⟩  
where M' is the TM defined in terms of M and w as follows:

M' = “On input x:
If x has the form 0n1n for some n  ∈ℕ, accept.
Run M on w.
If M accepts w, accept.
If M rejects w, reject.”

By the parameterization theorem, f is computable.  We claim, moreover, that ⟨M, w   A⟩ ∈ TM iff 
f(⟨M, w )  ⟩ ∈ REGULARTM.  To see this, note that f(⟨M, w ) = ⟩ ⟨M'   ⟩ ∈ REGULARTM iff (ℒ M') is 
regular.  We claim that (ℒ M') = Σ* if M accepts w and otherwise is { 0n1n | n  ∈ℕ }; from this, 
we have that (ℒ M') is regular iff M accepts w.  To see that this is true, note that if M accepts w, 
then M' accepts all strings, either because they are immediately accepted because they have the 
form 0n1n, or because they are accepted when M accepts w.  Thus (ℒ M') = Σ*.  Otherwise, if M 
does not accept  w, then  M' accepts  x iff  x has the form 0n1n.  Consequently,  M' accepts  x iff
x  { ∈ 0n1n | n  ∈ℕ }, so (ℒ M') = { 0n1n | n  ∈ℕ }, as required.

We thus have that (ℒ M') is regular iff M accepts w iff ⟨M,  w   A⟩ ∈ TM.  Thus ⟨M,  w   A⟩ ∈ TM iff 
f(⟨M,  w )  ⟩ ∈ REGULARTM.  Therefore,  f is a mapping reduction from ATM to  REGULARTM, so 
ATM ≤M REGULARTM.  Consequently, REGULARTM  ∈ RE. ■ 

We've used mapping reductions to relate the difficulty of R, RE, and co-RE languages to one another. 
Could we use them to relate problems from classes of languages as well?  Usually, the answer is no.

ii. Find an pair of languages  L1 and  L2 where  L1 ≤M L2,  L2 is regular, but  L1 is not regular, then 
prove that this is the case by exhibiting a mapping reduction from L1 to L2.  This means that we 
cannot establish that a language is regular by finding a mapping reduction from it to a known 
regular language.

To motivate why it is that we've defined reductions as we have, suppose that we change the definition 
of a mapping reduction as follows: For languages  A and  B,  we say that  A ≤M B iff there exists  a 
computable function f such that for any w  ∈ A, f(w)  ∈ B.

iii. Prove that under this modified definition, any language A is mapping reducible to any language 
B ≠ Ø.  This (hopefully!) explains why we didn't define reductions this way.



Problem Two: Accept all the Strings! (25 Points)*

Consider the language 

AALL = { ⟨M  | (⟩ ℒ M) = Σ* }

This language is neither RE nor co-RE, and in this problem you will see why.

i. Prove that ATM ≤M AALL.  Since ATM  co-∉ RE, this proves that AALL  co-∉ RE either.

The trickier part of the proof is proving that AALL is not RE.  To do this, we will reduce ATM ≤M AALL. 
Since ATM  ∉RE, this proves that AALL  ∉ RE either.

Suppose that you are given a Turing machine M and a string w.  We can construct a new TM M' (using 
the parameterization theorem) as follows:

M' = “On input x:
Run M on w for |x| steps.
If M accepted within |x| steps, reject.
Otherwise, accept.”

For example, on input  000,  M' would run M on w for 3 steps, rejecting if  M accepted w within that 
time and accepting otherwise.  Similarly, if  M' were run on 010101,  M' would accept if  M did not 
accept w within 6 steps and would reject otherwise.

ii. Prove that M does not accept w iff (ℒ M') = Σ*.

iii. Using your answer from (ii), prove that ATM ≤M AALL.  Since ATM is not RE, this proves that AALL 

is not RE either.

Problem Three: The Nature of RE and co-RE (10 Points)

When we first saw the language LD, we described it as a problem that was “harder” than ATM because 
ATM is RE while LD is not.  However, this might not have been a fair characterization.  Both LD and ATM 

are hard problems, but neither one is “harder” than the other in the sense that neither one is mapping 
reducible to the other.

Prove that there is no mapping reduction from ATM to LD or vice-versa.

* Original image by Allie Brosh.  This image courtesy of quickmeme.com.



Problem Four: Disjoint Unions (30 Points)

In what follows, assume that all languages are over the alphabet Σ = { 0, 1 }.

In the normal union of two languages, we simply combine all strings contained in both languages: 
L1 ∪ L2 is the set of all strings in at least one of L1 and L2.  When taking the union of two languages that 
are in known to be “hard,” we can often end up constructing a language that is substantially “easier” 
than either of the input languages.  For example, the language LD is co-RE but not RE, and similarly 
the language LD is RE but not co-RE.  However, their union LD  ∪ LD = Σ*, which is extremely easy to 
decide (it's regular, and there is a one-state DFA for it!)

The reason this problem is so much easier to solve than either LD or LD is that to decide whether a given 
string w is contained in LD  ∪ LD, we don't have to determine which of the two languages contains w. 
Any string w has to be in at least one of the languages, and therefore we can immediately say that w is 
contained in the union without determining whether it was in LD or LD.

A more interesting construction is the  disjoint union of two languages, a way of combining together 
strings from two different languages that tags each string with information about which language it 
came from.  Formally, the disjoint union of two languages L1 and L2 is the language

L1  ⊎ L2 = { 0w | w  ∈ L1 }  { ∪ 1w | w  ∈ L2 }

For example, if L1 = { 1, 10, 100, 1000 } and L2 = { ε, 0, 1, 00, 01, 10, 11 }, then L1  ⊎ L2 is the set

L1  ⊎ L2 = { 01, 010, 0100, 01000, 1, 10, 11, 100, 101, 110, 111 }

Notice how each string in L1  ⊎ L2 is tagged with which language it originated in.  Any string that starts 
with  0 came from  L1, and any string that starts with  1 came from  L2.  Because of this tagging, the 
disjoint union of two languages produces a new language that is at least as hard as either of the input  
languages.  In this problem, you will prove various important properties about the disjoint union.

i. Prove that if L1 and L2 are regular, then L1  ⊎ L2 is regular.  This shows that the regular 
languages are closed under disjoint union.

ii. Prove that if L1 and L2 are any languages, then L1 ≤M L1  ⊎ L2.  A similar proof can be used to 
show that L2 ≤M L1  ⊎ L2, but you don't need to do that here.

iii. Prove that if L is recognizable but undecidable, then L  ⊎ L is neither RE nor co-RE.

Your result from (iii) shows how to construct extraordinarily hard problems out of problems that are 
already known to be hard.  For example, ATM  ⊎ATM is neither RE nor co-RE, nor is HALT  ⊎HALT.



Problem Five: Finding Universal Turing Machines (25 Points)

In lecture we discussed the existence of a universal Turing machine UTM with the following description:

UTM = “On input ⟨M, w :⟩
       Run M on w.
       If M accepts w, accept.
       If M rejects w, reject.”

There is not just one universal Turing machine; in fact, there are infinitely many machines that are  
universal Turing machines.  Given this fact, could we determine whether or not a particular machine 
was universal?  Consider the language UNIVERSAL defined as follows:

UNIVERSAL = { ⟨M  | (⟩ ℒ M) = ATM }

i. Prove that LD ≤M UNIVERSAL.  This proves that UNIVERSAL is not co-RE. (Hint: Construct a  
deterministic TM M' such that (ℒ M') = Ø if M   ⟨ ⟩ ∉ ℒ(M) and ℒ(M') = ATM otherwise.  You may 
want to use the machine UTM as a subroutine inside the machine M' that you construct.)

ii. Prove that  LD ≤M UNIVERSAL.  This proves that  UNIVERSAL is not  RE.  (Hint: Construct a  
nondeterministic TM M' such that (ℒ M') = Σ* if M   ⟨ ⟩ ∈ ℒ(M) and ℒ(M') = ATM otherwise.  As 
before, you may want to use UTM as a subroutine in M'.)

Problem Six: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no 
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about 
how we're doing.

i. How hard did you find this problem set?  How long did it take you to finish?

ii. Does that seem unreasonably difficult or time-consuming for a five-unit class?

iii. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

iv. Is there anything in particular we could do better?  Is there anything in particular that you think 
we're doing well?

v. We will be holding a final exam review session and want it to be as useful as possible.  Are 
there any topics we should specifically focus on?  Any topics that you think we can skip?



Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance 
labeled “Stanford Engineering Venture Fund Laboratories.”   There will  be a  clearly-labeled 
filing cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list
(cs103-spr1112-submissions@lists.stanford.edu)  with  the  string  “[PS8]”  somewhere  in  the 
subject line.  If you do submit electronically, please submit your assignment as a single PDF if  
at all possible.  Sending multiple image files makes it much harder to print out and grade your 
submission.

If you are an SCPD student, we would strongly prefer that you submit solutions via email.  Please 
contact us if this will be a problem.

Extra Credit Problem: Three-State Turing Machines (5 Points Extra Credit)

A three-state Turing machine is (as the name suggests) a Turing machine with three states, two of 
which are the accept and reject states.  This leaves just one “work state” for the TM.

Prove that the language

A3TM = { ⟨M, w  | ⟩ M is a three-state TM that accepts w }

is decidable.
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